Distribution Theory on P.c.f. Fractals

نویسنده

  • LUKE G. ROGERS
چکیده

We construct a theory of distributions in the setting of analysis on post-critically finite self-similar fractals, and on fractafolds and products based on such fractals. The results include basic properties of test functions and distributions, a structure theorem showing that distributions are locally-finite sums of powers of the Laplacian applied to continuous functions, and an analysis of the distributions with point support. Possible future applications to the study of hypoelliptic partial differential operators are suggested.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis on Products of Fractals

For a class of post–critically finite (p.c.f.) fractals, which includes the Sierpinski gasket (SG), there is a satisfactory theory of analysis due to Kigami, including energy, harmonic functions and Laplacians. In particular, the Laplacian coincides with the generator of a stochastic process constructed independently by probabilistic methods. The probabilistic method is also available for non–p...

متن کامل

Smooth bumps, a Borel theorem and partitions of unity on p.c.f. fractals.∗

Recent years have seen considerable developments in the theory of analysis on certain fractal sets from both probabilistic and analytic viewpoints [1, 10, 19]. In this theory, either a Dirichlet energy form or a diffusion on the fractal is used to construct a weak Laplacian with respect to an appropriate measure, and thereby to define smooth functions. As a result the Laplacian eigenfunctions a...

متن کامل

Groups and analysis on fractals

We describe relation between analysis on fractals and the theory of self-similar groups. In particular, we focus on the construction of the Laplacian on limit sets of such groups in several concrete examples, and in the general p.c.f. case. We pose a number of open questions.

متن کامل

Pseudo-differential Operators on Fractals and Other Metric Measure Spaces

We define and study pseudo-differential operators on a class of fractals that include the post-critically finite self-similar sets and Sierpinski carpets. Using the sub-Gaussian estimates of the heat operator we prove that our operators have kernels that decay and, in the constant coefficient case, are smooth off the diagonal. Our analysis can be extended to products of fractals. While our resu...

متن کامل

Percolation on the Non-p.c.f. Sierpiński Gasket and Hexacarpet

We investigate bond percolation on the non-p.c.f. Sierpiński gasket and the hexacarpet. With the use of the diamond fractal, we are able to bound the critical probability of percolation on the non-p.c.f. gasket from above by √ 5−1 2 , or approximately 0.618. We then show how the two fractals are related via the barycentric subdivisions of a triangle: the two spaces exhibit duality properties al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010